

NPN+PNP Dual Transistors

Features

- Epitaxial planar die construction
- Power Dissipation of 200mW
- Two internal isolated NPN/PNP transistors in one package
- RoHS Compliant

Marking: .7P

7P

SOT-363

Applications

General purpose small signal amplifier

Mechanical Data

- Package: SOT-363
- Lead Finish:Matte Tin
- Case Material: "Green" Molding Compound
- UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 3 per J-STD-020

Epuivalent circuit

Maximum Ratings & Electrical Characteristics(TA=25°C unless otherwise noted)					
Parameter	Va	ue	Unit		
	Symbol	TR1	TR2	V	
Collector-Base Voltage	VCBO	50	-50	V	
Collector-Emitter Voltage	VCEO	45	-45	V	
Emitter-Base Voltage	VEBO	6	-5	V	
Collector Current Continuous	lc	100	-100	mA	
Collector Power Dissipation	PD	200		mW	
Operating Junction temperature	TJ	-55 to +150		°C	
Storage Temperature Range	T _{STG}	-55 to +150		°C	

П

TR1 NPN Electrical Specifications(TA=25°C unless otherwise noted)						
Baramatar	Symbol Test Conditions		Limit			
Parameter		Test Conditions	Min	Тур Мах	Max	Unit
Collector-BaseBreakdown Voltage	V _{(BR)CBO}	$I_{\rm C} = 10 \mu A, I_{\rm E} = 0$	50			V
Collector-EmitterBreakdown Voltage	V _{(BR)CEO}	$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0$	45			V
Emitter-BaseBreakdown Voltage	V _{(BR)EBO}	$I_{E} = 1 \mu A, I_{C} = 0$	6			V
Collector Cut-off Current	I _{CBO}	$V_{CB} = 30V, I_E = 0$			15	nA
Emitter cut-off current	I _{EBO}	V _{EB} =5V,I _C =0			15	nA
DC Current Gain	h _{FE}	$V_{CE} = 5V, I_C = 2mA$	200		450	
		$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0.5 {\rm mA}$			0.25	V
Collector-EmitterSaturation Voltage	V _{CE(sat)}	$I_{\rm C} = 100 {\rm mA}, I_{\rm B} = 5 {\rm mA}$			0.60	V
		$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0.5 {\rm mA}$		0.7		V
Base-EmitterSaturation Voltage	V _{BE(sat)}	$I_{\rm C} = 100 {\rm mA}, I_{\rm B} = 5 {\rm mA}$		0.9		V
		$V_{CE} = 5V, I_C = 2mA$	0.58		0.70	V
Base-Emitter Voltage	VBE(ON)	$V_{CE} = 5V, I_{C} = 10mA$			0.72	V
Transition frequency	f⊤	VCE=5V,IC=10mA f=100MHz	100			MHz
Collector output capacitance	C _{ob}	VCB = 10V, f = 1.0MHz			6.0	pF
Noise Figure	N _F	VCE = 5V,f=1.0KHz IC=200mA, RG = 2kΩ			10	dB

TR2 PNP Electrical Specifications(TA=25°C unless otherwise noted)						
Parameter	Symbol	Symbol Test Conditions		Limit		
Falameter	Symbol		Min	Тур	Max	Unit
Collector-BaseBreakdown Voltage	V _{(BR)CBO}	$I_{\rm C} = -10 \mu A, I_{\rm E} = 0$	-50			V
Collector-EmitterBreakdown Voltage	$V_{(BR)CEO}$	$I_{\rm C} = -10 {\rm mA}, \ I_{\rm B} = 0$	-45			V
Emitter-BaseBreakdown Voltage	V _{(BR)EBO}	$I_{E} = -1\mu A$, $I_{C} = 0$	-5			V
Collector Cut-off Current	I _{CBO}	$V_{CB} = -30V, I_E = 0$			-15	nA
Emitter cut-off current	I _{EBO}	V _{EB} =-5V,I _C =0			-15	nA
DC Current Gain	h _{FE}	$V_{CE} = -5V, I_{C} = -2mA$	220		475	
		$I_{C} = -10 \text{mA}, I_{B} = -0.5 \text{mA}$			-0.3	V
Collector-EmitterSaturation Voltage	V _{CE(sat)}	I _C = -100mA, I _B = -5mA			-0.65	V
Base-EmitterSaturation Voltage		$I_{\rm C}$ = -10mA, $I_{\rm B}$ = -0.5mA		-0.70		V
	V _{BE(sat)}	I _C = -100mA, I _B = -5mA			-0.95	V
		$V_{CE} = -5V, I_{C} = -2mA$	-0.6		-0.75	V
Base-Emitter Voltage	VBE(ON)	$V_{CE} = -5V, I_{C} = -10mA$			-0.82	V
Transition frequency	f⊤	V _{CE} =-5V, I _C =-10mA f =100MHz	100			MHz
Collector output capacitance	C _{ob}	V _{CB} = -10V, f = 1.0MHz			4.5	pF
Noise Figure	N _F	$V_{CE} = -5V$, f=1.0KHz I _C = -200mA, R _G = -2k Ω			10	dB

BC847PN GOOD-ARK Electronics

Ratings and Characteristics Curves

(TA = 25°C unless otherwise noted)

BC847PN GOOD-ARK Electronics

Ratings and Characteristics Curves

(TA = 25°C unless otherwise noted)

Soldering Parameters

Reflow Condition		Pb -Free assembly (see as bellow)
	-Temperature Min (T _{s(min)})	+150 ℃
Pre Heat	-Temperature Max(T s _(max))	+200 ℃
	-Time (Min to Max) (ts)	60 - 180 secs.
Average ramp up rate (Liquid us Temp (T L) to peak)		3 ℃ /sec. Max
Ts(maxtp TL-Ramp -up Rate		3 ℃ /sec. Max
	-Temperature(T L) (Liquid us)	+217 °C
Reflow	-Temperature(t L)	60 - 150 secs.
Peak Temp (T p)		+260(+0/ −5) °C
Time within 5 $^{\circ}\!C$ of actual Peak Temp (tp)		30 secs. Max
Ramp -down Rate		6 ℃ /sec. Max
Time 25 $^\circ\!\mathbb{C}$ to Peak Temp (T P)		8 min. Max
Do not exceed		+260 ℃

Package Outline Dimensions

millimeters

	MILLI	METER		
SYMBOL	MIN	MAX		
A	0.900	1.100		
A1	0.000	0.100		
A2	0.900	1.000		
b	0.150	0.350		
с	0. 080	0.150		
D	2.000	2.200		
E	1.150	1.350		
E1	2.150	2. 450		
е	0.650 TYP.			
el	1.200	1. 400		
L	0.525 REF.			
L1	0.260	0.460		

θ

0°

8°

Revision History

Document Version	Date of release	Description of changes
Rev.A	2017.06.13	First issue

θ

0.2

(T)

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page. (http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, Please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.