

SOT-23 Plastic-Encapsulate Switching Diode

Features

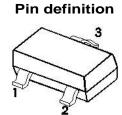
• 4.0nS; Fast Switching Device (TRR <4.0 nS)

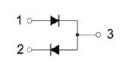
• 225mW; Power Dissipation of 225mW

• High Stability and High Reliability

• Low reverse leakage

Marking: M5C


SOT-23


Mechanical Data

• SOT-23 Small Outline Plastic Package

• Epoxy UL: 94V-0

• Mounting Position: Any

Epuivalent circuit

Maximum Ratings & Electrical Characteristics(TA=25°C unless otherwise noted)					
Parameter	Symbol	Value	Unit		
Reverse Voltage	V_R	100	V		
Peak Repetitive Reverse Voltage	V_{RRM}	100	V		
Power Dissipation	P _D	225	mW		
Average Rectified Output Current (Notes1,2)	lo	200	mA		
Non-Repetitive Peak Forward Surge Current @t=8.3ms	I _{FSM}	2	А		
Operating junction temperature range	TJ	150	°C		
Storage temperature range	T _{STG}	-55 to +150	°C		
Thermal Resistance from Junction to Ambient	Rеja	417	°C/W		

Electrical Specifications(TA=25°C unless otherwise noted)						
Parameter	Symbol	Test Conditions	Limits		Unit	
			Min	Max	Offic	
Reverse Voltage	V(BR)	IR=100uA	100		V	
Forward Voltage	V _F	IF=1mA		0.72	V	
		IF=10mA		0.82	V	
		IF=100mA		1.10	V	
Reverse Leakage Current	I _R	VR=100V		3.0	uA	
		VR=50V		1	uA	
Capacitance	CJ	VR=0V, f=1MHZ		1.5	pF	
Typical reverse recovery time	Trr	IF=IR=10mA VR=6V, RL=100Ω IRR=0.1 X IR		4	nS	

Ratings and Characteristics Curves

(TA = 25°C unless otherwise noted)

Fig.1 Typical Forward Characteristics

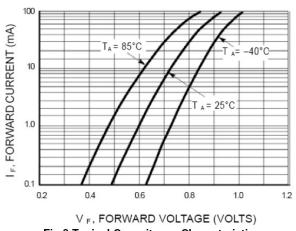


Fig.2 Typical Reverse Characteristics

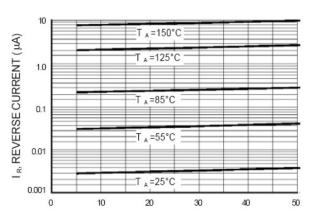
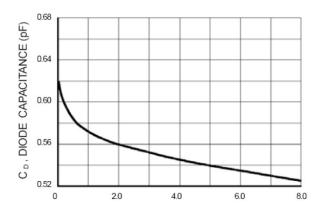
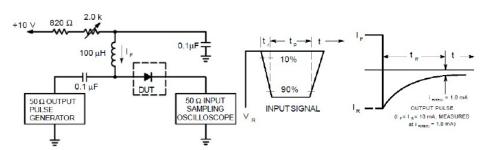
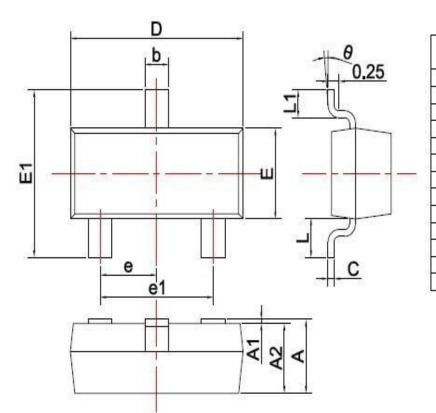




Fig.3 Typical Capacitance Characteristics

Recovery Time Equivalebt Test Circuit

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I $_{\rm F}$) of 10mA. 2. Input pulse is adjusted so I $_{\rm R(peak)}$ is equal to 10mA.

3. t_» t_


Recovery Time Equivalent Test Circuit

Package Outline Dimensions

millimeters

SYMBOL	DIMENSIONS		
	MIN.	MAX	
Α	0.900	1.150	
A1	0.000	0.100	
A2	0.900	1.050	
b	0.300	0.500	
С	0.080	0.150	
D	2.800	3.000	
E	1.200	1.400	
E1	2.250	2.550	
е	0.950TYP		
e1	1,800	2.000	
L	0.550REF		
L1	0.300	0.500	
θ	0°	8°	

Revision History

Document Version	Date of release	Description of changes
Rev.A	2017.12.01	First issue

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page. (http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, Please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.