10A,150V Schottky Barrier Rectifier ## **Features** - Low leakage current - Schottky barrier diode - Low forward voltage drop - Moisture sensitivity: level 1, per J-STD-020 - Halogen-free according to IEC 61249-2-21 definition - High temperature soldering guaranteed: 260 ℃/10 seconds # **Applications** For use of fast switching in RF module, lighting, cellular phone, portable device, power supplies, other consumer applications. | Maximum Ratings & Electrical Characteristics(T _A =25°C unless otherwise noted) | | | | | | |---|--------------------|-------------|------|--|--| | Parameter | Symbol | SGC101B5S | Unit | | | | Maximum repetitive peak reverse voltage | V _{RRM} | 150 | V | | | | Maximum RMS voltage | V _{RMS} | 105 | > | | | | Maximum DC blocking voltage | V _{DC} | 150 | V | | | | Maximum average forward rectified current | I _{F(AV)} | 10 | Α | | | | Peak forward surge current,8.3ms single half sine-wave superimposed on rated load | Ігѕм | 175 | А | | | | Operating junction temperature range | TJ | -55 to +150 | °C | | | | Storage temperature range | Тѕтс | -55 to +150 | °C | | | | Thermal-Mechanical Specifications (T _A =25°C unless otherwise noted) | | | | | | |---|--------------------|-----|-------|--|--| | Parameter | Symbol | Тур | Unit | | | | Thermal Resistance, Junction to Ambient | R _{thJA} | 40 | °C /W | | | | Thermal Resistance, Junction to Case | R _{th} Jc | 15 | °C /W | | | | Thermal Resistance, Junction to Lead | R _{thJL} | 7 | °C /W | | | | Electrical Specifications(TA=25°C unless otherwise noted) | | | | | | | | | |---|----------------------|------------------------------|------------------------|----------|------|------|------|--| | Parameter | Symbol | Test Conditions | | Тур | Max | Unit | | | | Forward drop voltage | VF | I _F =1A | T _A =25℃ | 0.60 | 0.65 | V | | | | | | I _F =2A | | 0.67 | 0.75 | | | | | | | I _F =5A | | 0.75 | 0.80 | | | | | | | I _F =10A | | 0.81 | 0.85 | | | | | | | I _F =1A | - T _A =125℃ | 0.47 | 0.52 | | | | | | | I _F =2A | | 0.54 | 0.60 | | | | | | | I _F =5A | | 1A=125 C | | 0.61 | 0.65 | | | | | I _F =10A | | 0.68 | 0.75 | | | | | Reverse leakage current @V _R | T _J =25°C | | - | 0.1 | mΛ | | | | | | IR | T _J =125°C | | - | 20 | mA | | | | Junction capacitance | Сл | V _R =4.0V, f=1MHZ | | 240 | - | pF | | | ### Note: 1. Mounted on copper pad area of 30 x 30mm to each terminal. ## Ratings and Characteristics Curves (TA=25°C unless otherwise noted) Figure 1.Forward Current Derating Curve Figure 3. Typical Reverse Characteristics Figure 5. Typical Junction Capacitance Figure 2.Maximum Non-Repetitive Peak Forward Surge Current Figure 4. Typical Instantaneous Forward Characteristics # **Package Outline Dimensions** in inches (millimeters) # **eSGC (TO-277B)** | DIM | Unit: mm | | Unit: inch | | |-----|-----------|-----|------------|-------| | | MIN | MAX | MIN | MAX | | HE | 6.4 | 6.6 | 0.252 | 0.260 | | E | 5.6 | 5.8 | 0.220 | 0.228 | | D | 4.1 | 4.3 | 0.161 | 0.169 | | B1 | 1.7 | 1.9 | 0.067 | 0.075 | | B2 | 8.0 | 1 | 0.031 | 0.039 | | Α | 1.05 | 1.2 | 0.041 | 0.047 | | С | 0.3 | 0.4 | 0.012 | 0.016 | | L | 0.85 | 1.1 | 0.033 | 0.043 | | L1 | 4.2 | 4.4 | 0.165 | 0.173 | | L2 | 3.52 Typ. | | 0.139 Typ. | | | L3 | 1.1 | 1.4 | 0.043 | 0.055 | | D1 | 3 | 3.3 | 0.118 | 0.130 | | E1 | 1.86 Typ. | | 0.073 Typ. | | ### Soldering footprint ### GOOD-ARK Electronics ## **Disclaimers** These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page. (http://www.goodark.com) When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials. Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.