

NPN Silicon Epitaxial Planar Transistor

Features

Low saturation

Mechanical Data

- Case: DFN2020-6LC
- Molding compound: UL flammability classification rating 94V-0
- Terminals: Tin-plated; solderability, per MIL-STD-202, Method 208

Epuivalent circuit

Maximum Ratings & Thermal Characteristics (@ TA = 25°C unless otherwise specified)					
Parameter	Symbol	Value	Unit		
Collector-Base Voltage	V _{CBO}	60	V		
Collector-Emitter Breakdown Voltage	Vceo	60	V		
Emitter-Base Breakdown Voltage	V _{EBO}	6	V		
Collector Current (Continuous)	lc	1	А		
Collector Current (Peak)	Ісм	2	А		
Power Dissipation (TA = 25° C) ^{*1}	PD	1.8	W		
Thermal Resistance Junction-to-Air *1	R _{0JA}	69	°C/W		
Junction Temperature	TJ	-55 ~ +150	°C		
Storage Temperature Range	T _{STG}	-55 ~ +150	°C		

Note

1: Per JESD51-7 with 100 mm² pad area and 2 oz. Cu (Single-Operation)

Electrical Characteristics (@ T _A = 25°C unless otherwise specified)						
Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_{C} = 100 \mu A, I_{E} = 0$	60			V
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	$I_{C} = 10 \text{mA}, I_{B} = 0$	60			V
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	$I_E = 100 \mu A, I_C = 0$	6			V
Collector Cut-off Current	Ісво	$V_{CB} = 60V, I_E = 0$			0.1	μA
Emitter Cut-off Current	I _{EBO}	$V_{EB} = 5V, I_{C} = 0$			0.1	μA
DC Current Gain	hfe	$V_{CE} = 2V, I_C = 100mA$	150			
		$V_{CE} = 2V, I_C = 500mA$	120			
		V _{CE} = 2V, I _C = 1A	90			
		$V_{CE} = 2V$, $I_C = 2A$	35			
Collector-emitter Saturation Voltage	V _{CE(sat)}	$I_{C} = 0.5A, I_{B} = 0.05A$			0.1	V
		$I_{\rm C} = 1$ A, $I_{\rm B} = 0.05$ A			0.2	V
		$I_{\rm C} = 1$ A, $I_{\rm B} = 0.1$ A			0.18	V
Base-emitter Saturation Voltage	VBE(sat)	$I_{C} = 0.5A, I_{B} = 0.05A$			1	V
		$I_{\rm C} = 1$ A, $I_{\rm B} = 0.05$ A			1	V
		$I_{\rm C} = 1$ A, $I_{\rm B} = 0.1$ A			1.1	V
Base-emitter On Voltage	V _{BE(on)}	$I_{C} = 0.5A, V_{CE} = 2V$			0.9	V
Output Capacity	Cob	V _{CB} = 10V, f = 1MHz		10		pF
Current-Gain—Bandwidth Product	fT	I _C = 0.05A, V _{CE} = 2V f = 100MHz		180		MHz

Ratings and Characteristics Curves

(@ $T_A = 25^{\circ}C$ unless otherwise specified)

Fig 1 hFE vs. Ic

Fig 3 VBE(sat) vs. Ic

Fig 2 VCE(sat) vs. Ic

Fig 4 VBE(ON) vs. Ic

۲

Ā

Package Outline Dimensions

millimeters

DFN2020-6LC			
Dimension	Min.	Max.	
А	1.900	2.100	
В	1.900	2.100	
С	0.500	0.600	
D	0.250	0.350	
E	0.800	1.000	
F	0.600	0.800	
G	0.550	0.750	
Н	0.000	0.050	
J	0.103	0.303	
L	0.174	0.326	

Revision History

Document Version	Date of release	Discroption of changes
Rev.A	2020.03.04	First issue

→ D | ←

G

ŧ

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page. (http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, Please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.